

Seminar within the "Quantum Circuits and Devices" course

Measuring quantum devices below 4K Cryogenic electronics

Giorgio Ferrari

Milano, December 2023

Who I am

Innovative Integrated Instruments for the Nanoscience Lab

M. Sampietro	G. Ferrari
D. Natali	F. Zanetto

+ E. Prati (UniMI)

Photonic Integrated Circuits

Control electronics for large-scale programmable photonic circuits (telecom, sensing, optical computing...)

Quantum computing

Cryogenic electronics for the readout and characterization of spin-based qubits

Biosensors and bio-inspired electronics Electronic sensors for virus, antibodies, DNA

CMOS neuromorphic circuits for ultra-low power data acquisition and processing

POLIFAB – Clean room facility

Cleanroom surrounded by a cluster of labs of microand nanoelectronics, photonics, photovoltaics, biotechnologies, spintronics, organic semiconductors

I3N lab is part of **polifab**, the micro and nano technology center of the Politecnico di Milano (750 m² of clean room)

POLITECNICO MILANO 1863

Outline

- Spin detection using room temperature instrumentation
- Cryogenic electronics
 - Challenges
 - Design rules
- Examples & state of the art

Single-Electron Transistor (SET)

 V_{B0} , V_{B1} biased to have an energy barrier for the electrons The energy barrier is thin enough to allow tunneling

Single-Electron Transistor (SET)

 V_{B0} , V_{B1} biased to have an energy barrier for the electrons The energy barrier is thin enough to allow tunneling

Single-Electron Transistor (SET)

 V_{B0} , V_{B1} biased to have an energy barrier for the electrons The energy barrier is thin enough to allow tunneling

SET-based single-charge detector Top view: Energy levels: Source $E_{f,s}$ SET $E_{f,d}$ Source QD Drain island no electrons Drain **I**_{SET} (donor)

POLITECNICO MILANO 1863

SET-based single-charge detector Top view: Energy levels: Source **I**_{SET} $E_{f,s}$ SET $E_{f,d}$ Source Drain island single electron Drain **I**_{SET} (donor)

POLITECNICO MILANO 1863

SET-based single-charge detector Top view: Energy levels: Source **I**_{SET} $E_{f,s}$ SET $E_{f,d}$ Source Drain island single 300 mK (a) electron Drain (PA) (donor) 3.0 0.4 0.0 0.0 0.5 1.5 1.0 Mazzeo, Prati, Ferrari et al APL 2012 Time (ms)

POLITECNICO MILANO 1863

Spin state detection: spin-to-charge conversion

Experimental set-up to study quantum devices

Experimental set-up to study quantum devices

POLITECNICO MILANO 1863

Experimental set-up to study quantum devices

Spin state detection: spin-to-charge conversion

How to avoid being penalized by a long cable?

Measuring an impedance using the properties of the cable:

Transmission line

 Z_0 = characteristic impedance of the cable, usually 50 Ω

Transmission line

 Z_0 = characteristic impedance of the cable, usually 50 Ω

The reflected wave is related to the load impedance!

a reflected wave is created!

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$

reflection coefficient

POLITECNICO MILANO 1863

Radio-frequency spin readout

SET resistance depends on the donor charge that, in turn, depends on the spin

$$\Gamma = \frac{R_{SET} - Z_0}{R_{SET} + Z_0}$$

However, R_{SET} >25k Ω , $Z_0 \approx 50\Omega$

limited sensitivity

Matching network

SET resistance depends by the donor charge

Passive network to match the high resistance of the SET to the $Z_0=50\Omega$ of the line

Matching network

$$Z_{eq} = R_{SET} \frac{1 + \frac{sL}{R_{SET}} + s^2 LC}{1 + sCR_{SET}}$$
$$\omega_{res} = \frac{1}{\sqrt{LC}}$$
$$Z_{eq}(\omega_{res}) = \frac{L}{CR_{SET}}$$

POLITECNICO MILANO 1863

Matching network

POLITECNICO MILANO 1863

F. Vigneau, et al. Appl. Phys. Rev. (2023), doi: 10.1063/5.0088229.

Readout based on RF reflectometry

R. Schoelkopf, et al. "The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer," *Science*, vol. 280, no. 5367, pp. 1238–42, May 1998

Recent review paper: F. Vigneau, et al. *Appl. Phys. Rev.* (2023), doi: 10.1063/5.0088229.

POLITECNICO MILANO 1863

Directional coupler

Basic idea using waveguides:

The contributions are added at port C. However, since the paths differ in length by $\lambda/2$, they cancel at port D.

Directional coupler

Basic idea using waveguides:

The only signal at port D is the reflected wave! (\ll voltage of the signal generator)

 $f=1GHz \rightarrow \lambda \approx 25cm$

RF reflectometry for superconducting qubits

Standard linear resonator: $\hbar\omega_0 = 4\mu eV @1GHz$ $\rightarrow T < 50mK$

 ω_0 excites all the transitions

<u>non-linear resonator</u> → nonuniform energy level spacing

→ impedance depends on the oscillation amplitude, i.e. the qubit state!

non-linear inductor (Josephson junction)

[J. Bardin et al, IEEE Microwave Magazine, 2020]

POLI

Readout of superconducting qubits

network $Y(\omega)$ for maximizing the signal and minimizing the perturbation on the qubit

transmission line is not directly connected to the qubit

readout resonator freq. ≠ qubit resonator freq.

[J. Bardin et al, IEEE Microwave Magazine, 2020]

Google quantum computer (sycamore)

POLITECNICO MILANO 1863

Google quantum computer (sycamore)

[J. Bardin, ISSSCC 2022]

POLITECNICO MILANO 1863

Quantum computer: wiring!

MIT Technology Review

Intelligent Machines

We'd have more quantum computers if it weren't so hard to find the damn cables

by Martin Giles, January 17, 2019

Image: IBM Research

Cables connecting qubits (<4K) to room temperature electronics are a limiting factor! (at least 2 coaxial cables / qubit)

- No space!
- No thermal budget! (≈1W at 4K, <1mW at 10mK)

Quantum computer: cryogenic electronics!

[Bardin, ISSCC 2019]

Outline

- Spin detection using room temperature instrumentation
- Cryogenic electronics
 - Challenges
 - Design rules
- Examples

Semiconductor freeze-out

The impurity band model

 E_v

*Esther Conwell, "Impurity Band Formation In Germanium and Silicon," Phys. Rev. **103(1)**,51(1956)

The impurity band model

Akturk et al., Silicon qubit workshop, 2009

A. Discrete States

B. On-set of impurity band formation

Overlapping in degenerate semiconductor will make it behave more like a metal ____than a semiconductor

> C. Broadening of the impurity band and overlap with the main band

*Esther Conwell, "Impurity Band Formation In Germanium and Silicon," Phys. Rev. **103(1)**,51(1956)

E_C

 E_v

POLITE

≈10¹⁹

[cm⁻³]

increasing doping leve

E. Prati, G. Ferrari et al., Nature Nanotechnology 7, 443–447 (2012)

Electronics below the freeze-out temp.

Silicon (standard) MOSFET operates below 40K!

Many GaAs devices operate at cryogenic temperature: degenerate at 10¹⁶ cm⁻³ Limitation: small (and expensive) scale integration

MOSFET operating at 4K

Standard analog CMOS Technology 3.3V, 0.35µm

PMOS 50µm / 0.7µm

very similar to the room temperature behavior!

POLITECNICO MILANO 1863

Eng et al. Silicon Qubit Workshop '09

MOSFET operating at 4K: problems

kink effect

Ghibaudo, Balestra, "Low Temperature characterization of Silicon CMOS Devices", 1995

POLITECNICO MILANO 1863

G

SiC

S

n+

n+

Problems are tech and size dependent

PMOS=50umx0.7um ...and no models from the CMOS 0.0 foundry! -2.0m N_{MOS}=50umx4.2um 4.2K ₹ -4.0m AMS 0.35µm DRAIN 8.0m -6.0m -8.0m 6.0m DRAIN N_{MOS}=50umx0.7um 4.2K 10.0m -10.0m 4.0m -2.5 -2.0 -3.0 -1.5 -1.0 8.0m V Г\Л 2 0m 6.0m 100 **[**3] No kink effect Kink effect 4.0m 80 [5] [4] **[**9] This work **[**8] [10] [7] Temperature [K] 2.0m 60 **[**11] **(**6] 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 40 Less problems using scaled technologies! V_{ns} [V] 20 [12] [19] [18] [13] [15] **•**[20] [14] • • [*] [17] R. M. Incandela, et al., pp. 58–61, [22] 0 •[16] 2017 ESSDERC. 10 100 1000 10000 Technology [nm] polimi.it

Quantum effects in small size MOSFETs!

POLITECNICO MILANO 1863

Quantum effects in small size MOSFETs!

POLITECNICO MILANO 1863

Design rule 1: characterize the technology!

MOS parameters strongly depend on the size and tech

Experimental characterization of YOUR technology is MANDATORY

For simple circuits 1 nMOS and 1 pMOS is enough series or parallel combinations of these basic transistors

less conductive MOS

more conductive MOS

POLITECNICO MILANO 1863

150nm CMOS technology – DC characterization

 \Box n-MOS $err_{MAX} \approx 15\%$ (peak 23%)

POLITECNICO MILANO 1863

4.2K $\Delta\%$ 0,56V +40% $900 \frac{cm^2}{Vs}$ +200% $7 \frac{mV}{m}$ -90%dec

Standard BSIM models are accurate enough:

 \Box p-MOS $err_{MAX} \approx 18\%$ (peak 32%)

Design rule 2: pay attention to mismatch!

worsening of mismatch by a factor of 1.5-3 at low temperature compared to room temperature (tech dependent).

Degradation of the offset voltage, linearity of ADC, DAC, bias setting

POLITECNICO MILANO 1863

Circuits and Systems, 2010

Design rule 3: subthreshold is critical

Design rule 4: dynamic range

AMS 0.35µm: parameters from 300K to 4K

- V_{T.n} from 0.45V to 0.7V
- V_{T.p} from -0.7V to -1.4V
- Power supply: still 3.3V
- no subthreshold

stack up few transistors! and limit the V_{DS}!

POLITECNICO MILANO 1863

Noise

POLITECNICO MILANO 1863

L. Le Guevel *et al.*, "Low-power transimpedance amplifier for cryogenic integration with quantum devices," *Appl. Phys. Rev.*, 2020

Noise

Thermal noise: $\overline{e_n^2} = 4kT\frac{\gamma}{g_m}$

T ↘, $g_m 7 \rightarrow noise ∨ ∨$ (0.1nV/ √Hz))

Flicker noise: usually does not decrease

R. Asanovski, et al., "Understanding the Excess 1/f Noise in MOSFETs at Cryogenic Temperatures," *IEEE Trans. Electron Devices*, 2023

dominant noise up to tens of MHz

L. Le Guevel *et al.*, "Low-power transimpedance amplifier for cryogenic integration with quantum devices," *Appl. Phys. Rev.*, 2020

Outline

- Spin detection using room temperature instrumentation
- Cryogenic electronics
 - Challenges
 - Design rules
- Examples

Spin qubit readout: measurement technique

[Park et al, "A Fully Integrated Cryo-CMOS SoC for State Manipulation, Readout, and High-Speed Gate Pulsing of Spin Qubits", JSSC, 2021]

POLITECNICO MILANO 1863

Frequency Division Multiplexing

M. Hornibrook et al. "Frequency multiplexing for

(ii) (f)

multiplexing chip superconducting niobium on a sapphire substrate (ideally, it is the same chip of the qubits)

readout of spin gubits," Appl. Phys. Lett., 2014

bias tees (C_{bias}, L_{bias}) 2 QDs and 2 QPCs

Frequency response of MUX circuit

A single cable for many qubits

POLITECNICO MILANO 1863

(d)

Quantum capacitance

quantum capacitance

POLITECNICO MILANO 1863

Quantum capacitance

$$\Delta Q = -q\Delta N_e = C_{geom}\Delta V_G \qquad \text{q=+1.6 10^{-19} C}$$

$$C_{geom} = \epsilon \frac{S}{d}$$

2D electron gas if $V_G > V_T$ at potential V_c $\Delta Q = -q\Delta N_e = C_{geom}(\Delta V_G - \Delta V_c)$ $-q\Delta N_e = C_{geom}\left(\Delta V_G + \frac{q\Delta N_e}{C_Q}\right)$ $-q\Delta N_e = \frac{C_{geom}C_Q}{C_{geom} + C_Q}\Delta V_G$

C_Q related to charge dynamics and not from geometrical parameters

$$C_Q = rac{m^*}{\pi \hbar^2} q^2$$

quantum capacitance

Gate-based spin readout

M. Urdampilleta, et al. "Gate-based high fidelity spin readout in a CMOS device," Nat. Nanotechnol., 2019

Gate-based spin readout

M. Urdampilleta, ESSDERC, 2020

M. Urdampilleta, et al. "Gate-based high fidelity spin readout in a CMOS device," *Nat. Nanotechnol.*, 2019

POLITECNICO MILANO 1863

giorgio.ferrari@po

0

3

Time (ms)

9

Spin qubit readout: measurement technique

[S. Subramanian, ISSCC 2023]

POLITECNICO MILANO 1863

Cryogenic transimpedance amplifier

Spin qubit readout: measurement technique

[S. Subramanian, ISSCC 2023]

Bulky off-chip components, fast analog-to-digital converter, µ-wave signals

Fully CMOS-compatible readout operated at T<5K:

POLITECNICO MILANO 1863

Spin qubit readout: measurement technique

[S. Subramanian, ISSCC 2023]

Bulky off-chip components, fast analog-to-digital converter, µ-wave signals

Fully CMOS-compatible readout operated at T<5K:

POLITECNICO MILANO 1863

Compact readout based on current measurement

- Fully-integrated 150-nm CMOS technology
- Direct charge-to-digital conversion

- Time division multiplexing architecture
- Low power consumption (1 mW/qubit)

[M. CASTRIOTTA et al., IEEE Solid-state Circuits Letters (2023)]

POLITECNICO MILANO 1863

Programmable floating-gate comparator

- V_{th} few mV! Process variations are critical
- Digital-to-Analog Converter (DAC): power consumption, TDMS

Floating node charged at V_{th}
 V_{out} > Compact and low power

How to change the charge?
How to compensate for the process variations?

Floating gate in standard CMOS technology

[M. Castriotta, Solid State Electronics 189 (2022)]

Floating gate in standard CMOS technology

Hot electron injection using a p-type MOSFET
 The electrons are removed by tunneling (coarse global resetting of the floating gates)

[M. Castriotta, Solid State Electronics 189 (2022)]

Hot electron injection in p-type FG transistor

holes collide with sufficient energy ($\approx 3/2 E_{gap}$) to liberate additional electron-hole pairs

- $V_{SFG} > |V_T|$ (ON)
- V_{SD}>>0V (high electric field)
- $V_{SD} \gg V_{SFG} (V_{FG} \gg V_D)$

[M. Castriotta, Solid State Electronics 189 (2022)]

Programmable comparator based on FGs

Standard 150-nm CMOS Technology

For standard latched comparator:

- if V_{in} >0V and C_k goes low:

 - I_{F6}>I_{F5}
 V_{out+} *Z*, V_{out-} ∖

Programmable comparator based on FGs

Standard 150-nm CMOS Technology

After tens of clock cycles, the threshold voltage of M_{F5} is such that $I_{F5} \approx I_{F6}$ \rightarrow the threshold voltage of the comparator is $\approx V_{in}$

Programming phase:

- $V_{DD,p}$, $V_{ss,p}$ and C_k shift down by 2.3V
- Differential charge injection
- $|V_{th}|$ of M_{F5} decreases and its curent increases
- The comparator threshold is increased after each clock cycle

POLITECNICO MILANO 1863

Programmable comparator based on FGs

Standard 150-nm CMOS Technology

DEvaluation phase:

Standard latched comparator with threshold stored in a pair of FG-transistor M_{F5} and M_{F6}

Programming phase:

- $V_{DD,p}, V_{ss,p}$ and C_k shift down by 2.3V
- Differential charge injection
- $|V_{th}|$ of M_{F5} decreases and its curent increases
- The comparator threshold is increased after each clock cycle

POLITECNICO MILANO 1863

Characterization of the FG comparator at 4,2 K

Characterization of the readout at 4.2 K

No off-chip components!

Threshold current: **1.1 nA** 6 Sigma: **250 pA** Readout time: **500 ns**

Power consumption: 1.2 mW

[M. CASTRIOTTA et al., IEEE Solid-state circuits letters (2023)]

0.79

POLITECNICO MILANO 1863

Cryogenic quantum controllers

Today

Tomorrow

Future

X. Xue et al., "CMOS-based cryogenic control of silicon quantum circuits," Nature, pp. 205–210, 2021

POLITECNICO MILANO 1863

Cryogenic quantum controllers

Home > Quantum Computing

Intel Launches Horse Ridge Chip for Quantum Computing Systems

by Anton Shilov on December 10, 2019 2:15 PM EST

+ Add A Comment

Posted in Quantum Computing Intel Servers Horse Ridge

POLITECNICO MILANO 1863

Cryogenic quantum controller (spin q.) - Intel

POLITECNICO MILANO 1863
Cryogenic quantum controller - Google

- superconducting qubits
- control of 2 qubits (measured!)
- 4mW/qubit
- RT readout
- 28 nm CMOS
- 1.8mm x 3.9mm

J. Yoo *et al.*, "Design and Characterization of a <4-mW/Qubit 28-nm Cryo-CMOS Integrated Circuit for Full Control of a Superconducting Quantum Processor Unit Cell," in *IEEE Journal of Solid-State Circuits*, vol. 58, no. 11, pp. 3044-3059, Nov. 2023,

giorgio.ferrari@polimi.it

Thank you for you attention!

POLITECNICO MILANO 1863